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Abstract— This paper introduces a method for learning ma-
nipulation agents which incorporate robot forward kinematics
as a differentiable module for reinforcement learning systems.
Forward kinematics as described by Denavit-Hartenberg (DH)
parameterization for rigid-body robots is fully differentiable
with respect to input joint angles, given fixed link-relative
geometric information. Including this differentiable module into
the structure of a reinforcement learning agent improves train-
ing speed, stability, and overall performance. By incorporating
this information only in the critic, the final learned policy
used to predict joint actions from image input does not directly
depend on receiving input joint information, instead learning the
necessary behavior implicitly via the kinematics-informed critic.
We illustrate this approach by modifying the critic in a modern
pixel-based actor-critic baseline to be a Kinematic Critic and
ablating across variations that provide similar pose information
but without the kinematic bias in the network architecture.
Results are given across several manipulation tasks and two
robot arms in Robosuite [1]. We additionally demonstrate a
simulation-learned policy running on a real Jaco 7DOF robot.

I. INTRODUCTION

This paper incorporates the classic Denavit-Hartenburg
(DH) [2] method of parameterizing robot kinematics as a
differentiable function for improving reinforcement learning
agents on several robotic manipulation tasks. The DH method
of joint parameterization was developed in 1955 by Jacques
Denavit and Richard Hartenberg [2] and has been a staple
tool for defining kinematic functions for rigid-body robots.

Robots learning to solve manipulation tasks must inher-
ently reason about controlling their own body. Models and
controllers based on explicit analytic physical parameteriza-
tion traditionally need detailed information such as manip-
ulator redundancies, kinematic limits, friction, acceleration,
and/or inertia, which can be difficult to define exhaustively
and measure accurately. When solving control tasks without
explicit information about the robot kinematics, such as
in model-free reinforcement learning (RL), dynamics and
structure prediction are inherently coupled with task-solving
in the agent. In this paper, we argue for a medium ground
between fully human-defined controllers which require defin-
ing parameters such as friction and inertia which are often
difficult to accurately estimate, measure, or simulate, and
fully learned agents who have no knowledge of the robot
they are tasked with controlling. Our approach incorporates
the easily defined and (typically) constant factors of robot
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Jaco Pick and Place Can in Simulation

Panda Door Open in Simulation

Jaco Reach Ball Real
Fig. 1: Training visual policies with a Denavit-Hartenburg
view of robot joint positions enables agents to learn com-
plex visual policies that can operate in the real world.
This figure depicts successive frames of our Kinematic
Critic performing robotic manipulation tasks. Full videos
can be found at https://johannah.github.io/
kinematic-critic

geometry into the learning pipeline resulting in better overall
learned control policies.

Recently introduced automatic differentiation tools such
as Pytorch [3] and Jax [4] enable easy incorporation of
the DH-defined kinematics function (and its Jacobian) into
deep learning models with full gradient propagation. Recent
innovations have illustrated the appeal of incorporating dif-
ferentiable functions [5] into learning systems or building
entire environments [6], [7], [8] as a method for improving
the learning of complex functions which have differentiable
physical simulators. Our approach maintains much of the
simplicity of model-free RL while harnessing well-defined
robot kinematics as a differentiable structural bias without
the overhead of fully differentiable environments.

https://johannah.github.io/kinematic-critic
https://johannah.github.io/kinematic-critic


Fig. 2: In the Kinematic Critic architecture, we differentiate
through a function performing Denavit-Hartenburg kinemat-
ics during training. The DH function is given the constant
↵, d, and l parameters as well as the joint angle state,
jt, and relative angle action, at, which are added together
to form ✓in Eq. 1. Note that the sampling of action at

admits differentiation with respect to the action distribution
predicted by the actor, using the reparameterization trick [9],
[10].

The main contributions of this paper are as follows:
• Describe a method to incorporate forward kinematics

with the Denavit-Hartenberg (DH) function in an au-
tomatic differentiation framework for use in a deep
reinforcement learning algorithm.

• Demonstrate notable improvement on a suite of robot
manipulation benchmarks in simulation on Jaco and
Panda robots over a standard pixel-based actor-critic
algorithm.

• Show the importance of differentiating through the
kinematic function over architectures that provide the
same joint information without the structural bias of
kinematics.

II. BACKGROUND

A. Kinematics

Forward kinematics allows computing a robot’s kinematic
chain for a particular configuration to find the pose of
the end-effector from joint parameters and joint angles,
where joint parameters are known constants that define the
geometric relationship between the serial links of a rigid
body chain. There are several conventions for assigning
joint parameters [11], but in this paper, we only explore the
Denavit-Hartenburg [2] method of parameterization. DH is
advantageous because it is easily calculable, is often provided
by default by robot manufacturers, and is differentiable with
respect to input joint angles, given geometric information
such as lengths and relative link rotations (see Fig 4).

For each joint, i, in a rigid body, the DH parameters are
described by di (distance from joint i to the actuator axis

i�1), ✓i (angle rotation about axis i�1), ai (the distance of
joint i along actuator axis i� 1), and ↵i (the angle between
actuators of axis i and axis i� 1).

[T ] =
nY
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i�1
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In this convention, transformations are serially performed
between n links with joint parameters ✓i as specified in
Eq. 1. The value of a joint angle, i�1

Ti(✓i), shown in Eq. 2
describes the transformation from link i to the previous link.
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In this work, the DH parameters (↵, d, and l) are assumed
constant throughout training, and not directly optimized via
backpropagation or any other means. Joint angles, specified
by ✓, are optimized by the neural control policy of the
reinforcement learning agent.

B. Learned Controllers

The choice of controller to use for robot learning can have
a large impact on task difficulty - for instance, a ping-pong
robot will need precise control of both end-effector pose and
velocity, while the task of box stacking may be simpler to
learn with a Cartesian controller [12] where low-level control
of joints is handled by a controller specified from expert
robot knowledge [13]. In Cartesian (also known as Task)
Space, actions are the target position and/or orientation of
the end-effector in Euclidean space (x, y, z). These high-
level control methods can simplify many tasks but often
make assumptions about the operating environment and agent
structure in order to perform the complex task of Cartesian
space to joint space mapping which may make accounting
for nuance such as correcting for a grasped object’s weight
or avoiding obstacles more difficult.

At the other end of the control spectrum are agents
which learn to control robots directly from torque applied
to motors [14], [15], [16], [17]. This can make solving
tasks requiring longer-term planning challenging, as agents
typically need to operate at higher control rates while also
learning physical dynamics.

In this paper, we bridge the utility of high and lower-level
controllers, utilizing joint-angle control to enables precise
control of joints, while biasing this control with a forward
kinematics function that provides structural bias of end-
effector pose. In a similar manner, JAiLeR [18] details a
paradigm for training a joint angle controller which maps
from Cartesian space to joint space using model-free RL
on proprioceptive state observations. JAiLeR relies on cur-
riculum learning to produce an inverse kinematics controller
with similar performance to OSC on goal-conditioned reach
tasks, demonstrating the capability to incorporate obstacle
avoidance directly into the observation state space of the
agent. Unlike JAiLeR, an agent trained with a Kinematic



Fig. 3: Evaluation curves depicting the mean (solid line) and the shaded 95 percent confidence interval around the mean, with
performance measured over 5 randomly chosen seeds. The Kinematic Critic architecture (green) outperforms other ablations
on average, including agents with critics which directly calculate the expected end-effector pose without back-propagating
gradient information (red) and agents which are given robot joint angles directly (orange). The stark discrepancy between
the green and red reward curves emphasizes the power of allowing gradient propagation.

Critic operates on images rather than joint states during
evaluation, requires no special curriculum during training,
and is shown to work on other complex tasks in addition to
inverse kinematics.

C. Model-Based Control

The Kinematic Critic may be considered a Model-Based
Controller as the module computes the forward kinematics
for a given agent action though the accuracy of this model
is not corrected by any special loss term. Most traditional
controllers also use the physical attributes of the robot and/or
its environment for operation. In the widely used Operational
Space Controller [19], [13], the accuracy of the physical
parameterization of the robot, particularly, the mass matrix
can vary based on load and configuration, and performance
can deteriorate quickly if this estimate is inaccurate [19].

There is a large field of research on developing physics
models for use by robot controllers. One can impose vary-
ing degrees of prior knowledge about the system into the
model, including kinematic equations and factors such as
mass, friction, or inertia [20], [21], [22]. Despite its appeal,
prescribed knowledge can be difficult or idiosyncratic to
define for particular robots, but can potentially provide both
generalization and interpretability.

On the other hand, purely data-driven models [17], [23]
use function approximators to fit the complex dynamics that
govern robot control. Data-driven approaches tend to be
limited by the coverage of their dataset, but are often simpler
to implement and can excel if the true system characteristics
differ from those that might have been prescribed by (often
practically limited) model factorizations. Most deployed sys-
tems are a blend of prescribed physics with learned models
that attempt to overcome the inevitable dynamics errors
of our physics assumptions in complex robots. Williams
et al. [24] demonstrates the power of learning a con-
troller with factorized dynamics models. They incorporate
kinematic equations on several robotic systems, including
an aggressive driving task. Model-based Action-Gradient-
Estimator Policy Optimization (MAGE) [25] is a continuous-

Parameter Value
Controller Type Joint Position

Control Rate 10 Hz
Impedance Mode Fixed
Max Action Step 0.15 radians

KP (30, 60, 50, 70, 60, 70, 90)
Damping Ratio (0.1, 0.17, 0.2, 0.3, 0.1, 0.1, 0.1)

Actor Input 3 consecutive RGB frames
Camera Frontview
Reward Dense

Expl. Stddev. Schedule linear(1.0, 0.1, 500000)

Environment Uniform Init

Reach: Target 0.1m from EEF
Door: ±.02m, ±0.25rad from origin

Lift: Cube ±0.03m from origin
Can: Can ±0.145m⇥±0.195 region

Robot Joint Init Gaussian, stddev=0.2

TABLE I: Experiment Hyperparameters

control DDPG actor-critic algorithm that explicitly trains the
critic to provide action-gradients by backpropagating through
a learned dynamics model. OSCAR [26], introduces a data-
driven variant of OSC which learns to adapt the physics
model online for task-specific and task-agnostic manipula-
tion. For a more exhaustive review of design choices in
incorporating learned dynamics models with physics, refer
to Lutter et al. [20].

D. Learning Pose with Kinematic Constraints

We study the problem of learning to solve manipulation
tasks from images, where the robot must complete a task with

Fig. 4: DH parameters for the Jaco 7DOF Robot.



Fig. 5: Diagrams illustrating the 4 critic architectures tested in this paper. The (a) image variation represents the standard
DrQv2 critic setup, the (b) variation shows the critic network with joint angle directly, (c) is kine method, which exploits
the Denavit-Hartenberg parameterization of forward kinematics to provide a lightweight, differentiable model of the end
effector pose to the critic, and finally, in eef, we test the importance of differentiability through the kinematic function by
removing the gradients while still giving the critic access to the end effector pose. Critic setups (b), (c), and (d) are a core
contribution to this work, and we study the performance of each variant in Section IV

state information being provided from camera observations.
During training, our agent also has access to its own joint
angles. When learning robot policies from images, an agent
must implicitly learn to map the image and its actions back
to its own pose. Learning this action-observation mapping of
multi-link articulated objects is inherently difficult because
the pose is not only high dimensional but also has structural
constraints inherent in the rigid body chain that makes up
the robot that are compounding and not always visible in
the single-camera view provided. Past work on mixture den-
sity estimation using neural networks [27] utilizes a neural
network that, given input joint angles and assuming fixed link
lengths, predicts the parameters of a mixture distribution over
end-effector positions for robot kinematics of a simplified
two-link arm. Though this work was not utilized directly for
control, this example serves as an introduction to the more
general kinematics concepts at play in our work.

The observation problem has been tackled in the computer
vision community. Deep Kinematic Pose Regression [28]
embeds a differentiable kinematic object model into a neural
network for predicting pose from images. Their network pre-
dicts the joint motion parameters of an object while learning
directly on the joint location loss described by a kinematics
chain or kinematics tree. This model is demonstrated on a
toy 2D robot and 3D human pose, achieving state-of-the-
art results on the Human3.6M dataset. The formulation of
the kinematics loss based on pixel input bears similarity to
the overall approach featured in our work, however, Deep
Kinematic Pose Regression was used in a supervised learning
setting with a direct loss on pose, rather than for robotic
control.

III. METHOD

We employ a Deep Deterministic Policy Gradients
(DDPG) [29] reinforcement learning agent that utilizes an
actor-critic [30] network structure. As in Asymmetric Actor-

Critic [31], our approach uses the fact that the actor and
critic are two separate networks to give extra information to
the critic during training. Our reinforcement learning agent
is built on the successful DrQv2 [14] network architecture.
DrQv2, which iterated on its predecessor DrQ [32], utilizes
image augmentation to achieve sample-efficient high perfor-
mance on continuous robot controls tasks. DrQv2 employs
a DDPG learner with uses n-step returns to estimate TD
error. As in DrQ [32], DrQv2 [14], and TD3 [33], the
practical implementation of these Q functions uses clipped
Double Q-learning, duplicating estimate calculations through
independent networks with identical architectures f1 and
f2, resulting in Q1⇤ and Q2⇤. For more details on this
formulation, and overall problem setting see DrQv2 [14].
All of our environment hyperparameters match the official
implementation of DrQv2, aside from the replay buffer size,
which we adjust from 1M to 500k stored image states. To
adapt DrQv2 from Deepmind Control Suite [34] Torque
Control to Robosuite [1] Joint Position Control, we do not
repeat actions, instead, the agent runs its controller requesting
relative joint angles at a constant control rate. Please see
Tab. I for additional detail.

We test the image critic architecture from DrQv2, with
angle, kine (Kinematic Critic), and eef ablations as described
in Fig. 5. These ablations were chosen to test the influence
of the choice of representation of the additional information
provided in Kinematic Critic. In the angle ablation, current
robot joint angles are concatenated with the state, ht (as
encoded by a convolutional network), and actions, though
it does not benefit from explicit knowledge of the kinematic
structure of the robot. For both eef and kine, we estimate the
expected pose of the end-effector for a given relative action
by computing forward kinematics from the current joint
angle using the DH method. In kine, the Kinematic Critic
enables differentiation that can be used by the agent as a
gradient path for learning and backpropagation. However, in



Jaco Door Opening Trained with Images and a Kinematic Critic (kine)

Jaco Door Opening Trained with Images Only (image)

Fig. 6: Representative frames from Kinematic Critic (top row) and Image Only (bottom row) agents solving the Door
Opening task. We find that Kinematic Critic agents show higher coordination among joints (especially evident in the Jaco
arm), producing policies in which the end effector moves smoothly and efficiently through space.

the eef experiments, we prevent gradient propagation through
the DH function to study the importance of gradient flow,
while providing access to roughly the same information as
the kine variant.

Qim = f(ht, at) (3)
Qangle = f(ht, at, jt) (4)
Qkine = f(ht, DH(at + jt)) (5)
Qeef = f(ht, DH(sg(at) + jt))) (6)

Equation group 6 outlines the core critic calculations used
by our tested architectures, as outlined in Figure 5. We
denote the parameterized critic architecture as f , sg for ”stop
gradient”, and DH for the Denavit-Hartenburg calculation as
described in subsection II-A. ht is the intermediate hidden
activation resulting from a convolutional network over the
input image at time t, xt, ht = conv(xt), at is the relative
action sampled from the actor sub-network, and jt denotes
the absolute joint position, as given by angle encoders on
robot joints.

A. Core Contributions

The primary contributions of our method, as compared to
the aforementioned background are as follows

• Our work builds directly on a strong actor-critic visual
RL baseline with no use of expert traces, imitation
learning, or behavior cloning.

• We utilize rewards from the environment and do not for-
mulate pose-specific losses or employ multitask train-
ing. We provide end-effector pose information (via a
differentiable DH function) through the internal work-
ings of the critic sub-network, thus allowing the overall

actor-critic model to decide how best to use this in-
formation to maximize overall reward. This means that
useful pose-related dynamics (such as smoothness or
stability) are learned implicitly, without explicit pose-
specific losses or rewards.

• Rather than using the entire feature-based state infor-
mation in the critic like Asymmetric Actor-Critic [31],
we use only joint angles of the robot along with the DH
parameterization to improve training. This is advanta-
geous as joint angles are likely to be well-modeled in
sim2real transfer for a variety of robot platforms.

• Dynamics learning is relegated to the underlying RL
agent, and we do not explicitly factorize dynamics learn-
ing using physics knowledge - only kinematic struc-
ture, on a per-timestep basis, is used. While kinematic
structure in this work is closely related to the adjoint
calculations used in the Articulated Body Algorithm
(ABA) [35], [21], as well as the kinematic calcula-
tions in Deep Kinematic Pose Regression [28], Quater-
Net [36], or many other works utilizing kinematic chain
or tree calculations, it is not coupled with estimations of
velocity, acceleration, mass, inertia, and other physics
related quantities. Instead, we utilize a combination of
RL and standard joint-position controllers for overall
problem dynamics.

• We operate directly from pixels, with no goal condi-
tioning or state information [18] beyond the knowledge
of the robot geometry (assumed constant throughout
training on a per-task basis, and given to the critic sub-
network) and robot joint angles (which are also used
by the controller). The actor only consumes images as
inputs, as is common in continuous control from pixels
work in reinforcement learning [14], [15].



Fig. 7: Reach and Lift tasks on the Panda.

IV. EXPERIMENTS AND DISCUSSION

We investigate the impact of adding differentiable kine-
matics structure into the critic of an image-based reinforce-
ment learning architecture for a set of tasks trained in
Robosuite [1], a robotics simulation framework powered by
the MuJoCo physics engine [37].

We demonstrate performance on 4 tasks: Door, Reach,
Lift, and Can (listed in the order of increasing difficulty) for
the Jaco 7DOF manipulator and the Panda 7DOF arm. Object
position and robot initial joints are randomized on reset, with
range of variability set per task as default in Robosuite. All
performance curves are shown depicting the mean (solid line)
and the 95 percent shaded confidence interval around the
mean over 5 randomly chosen seeds of episodic reward over
agent training steps in evaluation.

Our experiments show the differentiability of the DH func-
tion is critical to driving effective learning of the network.
Simply providing the relevant proprioceptive information to
the critic, such as in the angle variant (orange), did not
seem to help much over the pure image variant (blue).
This is particularly evident in the reward traces for the
Jaco Door opening task shown in Fig I. By propagating
information from the DH function inside the critic, through
the action space, into the actor and finally through the
convolutional encoder networks, we see that the Kinematic
Critic agent (green) greatly outperforms the eef variant (red)
despite both agents receiving the end effector pose as input
into the critic. Enabling gradient flow through a kinematics
function improves learning speed, stability, and overall per-
formance in every case we tested. This performance increase
is particularly notable on tasks where a wide distribution
of coordinated poses were required, especially on the Jaco,
which was less stable in our simulation.

We also demonstrate the Reach policy on a real Jaco arm

Fig. 8: Reach, Lift, and Can tasks on the Jaco.

(see Fig.1) by iteratively syncing the simulator to the real
setting, predicting actions based on simulator frames, and
then applying the predicted action back to the real robot.
More sophisticated real2sim or sim2real [38] approaches
could be integrated symbiotically with the Kinematic Critic
to improve performance in this setting, but fall outside the
scope of the current publication.

V. CONCLUSION

In this work, we introduce a method of incorporating
differentiable Denavit-Hartenburg (DH) transformations into
an actor-critic reinforcement learning algorithm. By training
a critic with access to DH while training its actor only
on images, we learn vision-based policies for complex ma-
nipulation tasks with better performance than variants with
access to the same joint state information. Our evaluation
shows that the differentiability of the DH transformation
in the critic is crucial for effective training. Overall our
method improves upon strong actor-critic baselines across
several benchmark tasks and solves all tasks. The learned
policies are directly transferrable to real-world settings, and
we demonstrate this by tasking a real-world robot using
simulation learned policies.
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