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Abstract— This paper introduces a pixel-based actor-critic ar-
chitecture featuring a differentiable Denavit-Hartenburg (DH)
forward kinematics function in the critic sub-network, which
achieves substantial improvement in average cumulative reward
across several complex manipulation tasks and two robot
arms in Robosuite [1], compared to strong baselines. Forward
kinematics as described by DH parameterization for rigid-body
robots is fully differentiable with respect to input joint angles,
given fixed link-relative geometric information, and including
this differentiable module improves training of reinforcement
learning agents on an array of benchmark manipulation tasks.
We show the importance of formulating a differentiable kine-
matic function for overall task performance in an ablation
study, and demonstrate a simulation-learned policy running on
a real Jaco 7DOF robot.

I. INTRODUCTION

This paper examines the classic Denavit-Hartenburg
(DH) [2] method of parameterizing robot kinematics as
a differentiable function for improving pixel-based actor-
critic reinforcement learning [3], [4], [5], [6] on several
robotic manipulation tasks [1]. The DH method of joint
parameterization was developed in 1955 by Jacques Denavit
and Richard Hartenberg [2] and has been a staple tool
for defining robotic kinematic functions. Modern automatic
differentiation tools [7], [8] enable easy incorporation of
this function (and its Jacobian) into deep learning models,
including deep reinforcement learning frameworks.

Robots learning to solve manipulation tasks must inher-
ently reason about controlling their own body. Models and
controllers based on explicit analytic physical parameteriza-
tion traditionally need detailed information such as manip-
ulator redundancies, kinematic limits, friction, acceleration,
and/or inertia, which can be difficult to define exhaustively
and measure accurately. When solving tasks without explicit
models, such as in model-free reinforcement learning (RL),
dynamics and structure prediction is inherently coupled with
task-solving in the agent. While recent methods learning
model-free robot control from images such as DrQv2 [6]
have strong performance on benchmarks, in this paper we
show how providing a well-described differentiable robot
kinematics function improves agents, allowing the agent to
leveraging partial knowledge about the system kinematics to
improve performance.

The main contributions of this paper are as follows:
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Jaco Pick and Place Can in Simulation

Panda Door Open in Simulation

Jaco Lift Block in Simulation

Panda Reach Ball in Simulation

Jaco Reach Ball Real
Fig. 1: Training visual policies with a Denavit-Hartenburg
view of robot joint positions enables agents to learn com-
plex visual policies that can operate in the real world.
This figure depicts successive frames of our Kinematic
Critic performing robotic manipulation tasks. Full videos
can be found at https://johannah.github.io/
kinematic-critic

https://johannah.github.io/kinematic-critic
https://johannah.github.io/kinematic-critic


Fig. 2: Kinematic Critic Architecture: differentiate through
the Denavit-Hartenburg Kinematics during training. Note that
the sampling of action at admits differentiation with respect
to the action distribution predicted by the actor, using the
reparameterization trick [9], [10].

• We describe a method to incorporate forward kine-
matics with the Denavit-Hartenberg (DH) function in
an automatic differentiation framework for use in a
deep reinforcement learning algorithm, and show how
to incorporate this structure for rigid body robots.

• We demonstrate notable improvement on a suite of robot
manipulation benchmarks in simulation on Jaco and
Panda robots using a pixel-based actor-critic algorithm
compared to strong baselines.

• We show the applicability of our system, trained only
in simulation, on a real Jaco robot with a hybrid
simulation-real approach.

II. BACKGROUND

A. Kinematics

Forward kinematics allow computing a robot’s kinematic
chain for a particular configuration to find the pose of
the end-effector from joint parameters and joint angles,
where joint parameters are known constants that define the
geometric relationship between the serial links of a rigid
body chain. There are several conventions for assigning joint
parameters [11], but in this paper we use the popular Denavit-
Hartenburg (DH) [2] method of rigid body parameterization,
which is differentiable with respect to input joint angles
given geometric information such as lengths and relative link
rotations (see Fig 4).

For each joint, i, in a rigid body, the DH parameters are
described by di (distance from joint i to the actuator axis
i−1), θi (angle rotation about axis i−1), ai (the distance of
joint i along actuator axis i− 1), and αi (the angle between
actuators of axis i and axis i− 1).

[T ] =

n∏
i=1

i−1Ti(θi) (1)

In this convention, rigid body transformations are serially
performed between n links with joint parameters θi as
specified in Eq. 1 where i−1Ti(θi), shown in Eq. 2 describes
the transformation from link i to the previous link.

i−1Ti =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sinθi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 (2)

DH parameters as defined by the robot geometry are assumed
constant throughout training, and not directly optimized via
backpropagation or other means in this work. However, given
a fixed set of DH parameters, it is possible to describe
the Jacobian from end-effector position, through the DH
transformation into joint angle space and thus any preceding
functions (such as neural network layers of a policy network),
thus enabling use of this function as part of a deep neural
network trained by backpropagation. The importance of this
differentiability is further detailed in Sec.IV.

B. Learning Controllers

The choice of controller to use for robot learning can have
a large impact on task difficulty - for instance a ping-pong
robot will need precise control of both end-effector pose and
velocity, while the task of box stacking may be simpler to
learn with a Cartesian controller [12]. Many manipulation
agents utilize Cartesian controllers [13] where low-level
control of joints is handled by a controller specified from
expert robot knowledge [14], [15], [16], [17]. In Cartesian
(also known as Task) Space, actions are the target position
and/or orientation of the end-effector in Euclidean space
(x, y, z). This high level control method can simplify many
tasks, but has some drawbacks. General Cartesian controllers
make assumptions about the operating environment and agent
structure in order to perform the complex task of Cartesian
space to joint space mapping. These assumptions may make
accounting for nuance such as correcting for a grasped
object’s weight or avoiding obstacles more difficult.

At the other end of the control spectrum are agents which
learn to control robots directly from torque applied to motors
[18], [6], [19], [20], [21], [22], without the use of higher
level controllers. This can make solving tasks requiring
long-term planning challenging, as agents typically need to
operate at higher and less forgiving control rates while also
learning physical dynamics. In this paper we utilize joint
space control to enable the direct applicability of the DH
parameterization for kinematics. Other works [23], [24] have
demonstrated joint position control to be a feasible method
for controlling RL agents on real robots. JAiLeR [24] details
a paradigm for training a joint position controller which maps
from Cartesian space to joint space using model-free RL on
proprioceptive state observations. JAiLeR also employs cur-
riculum learning to produce an inverse kinematics controller



Fig. 3: Evaluation curves depicting the mean (solid line) and the shaded 95 percent confidence interval around the mean, with
performance measured over 5 randomly chosen seeds. The Kinematic Critic architecture (green) outperforms other ablations
on average, including agents with critics which directly calculate the expected end-effector pose without back-propagating
gradient information (red) and agents which are given robot joint angles directly (orange). The stark discrepancy between
the green and red reward curves emphasize the power of allowing gradient propagation.

with similar performance to OSC on goal-conditioned reach
tasks, demonstrating the capability to incorporate obstacle
avoidance directly into the observation state space of the
agent.

C. Model-Based Control

A common example of a controller using physical at-
tributes is in the widely used [25] Cartesian-space Oper-
ational Space Controller [13]. OSC relies heavily on the
accuracy of the physical parameterization of the robot, par-
ticularly, the mass matrix which can vary based on load and
configuration. Controller performance can deteriorate quickly
if this physics estimate is inaccurate [25].

There is a large field of research on developing models for
use by robot controllers. One can impose varying degrees of
prior knowledge about the system into the model, including
kinematic equations and factors such as mass, friction, or
inertia [26], [27], [28]. Despite its appeal, prescribed knowl-
edge can be difficult or idiosyncratic to define for particular
robots but can potentially provide both generalization and
interpretability. On the other hand, purely data-driven mod-
els [21], [29] use function approximators to fit the complex
dynamics that govern robot control. Data-driven approaches
tend to be limited by the coverage of their dataset, but may
provide significant performance benefit over heavily pre-
scribed and factorized models, if true system characteristics
differ from those prescribed by model factorization but are
well captured in the dataset itself.

Most practical systems are a blend of prescribed physics
with learned models that attempt to overcome the inevitable
dynamics errors of our physics assumptions in complex
robots. Williams et al. [30] demonstrate the power of learn-
ing a controller with factorized dynamics models. They
incorporate kinematic equations on several robotic systems,
including an aggressive driving task. Model-based Action-
Gradient-Estimator Policy Optimization (MAGE) [31] is
a continuous-control DDPG actor-critic algorithm which
explicitly trains the critic to provide action-gradients by
backpropagatating through a learned dynamics model. OS-

CAR [15], introduces a data-driven variant of OSC which
learns to adapt the physics model online for task-specific and
task-agnostic manipulation. For a more exhaustive review
of design choices in incorporating learned dynamics models
with physics, refer to Lutter et al.[26].

D. Differentiable Physics Engines

Incorporating differentiable physics into robot learning
agents has become increasingly possible thanks to the con-
tinually improving fidelity and speed of simulators [32]. For
instance, Deluca [33], a Jax-based library introduces several
fully differentiable classic control tasks and ChainQueen [34]
presents a real-time differentiable simulator for deformable
objects. Millard et al. [35] demonstrate a differentiable
simulator for rigid body dynamics with realistic integrators
which are constrained to the laws of physics. The strength of
their simulator accuracy is demonstrated over long-horizon
adaptive model-predictive control (MPC).

E. Learning Pose with Kinematic Constraints

We study the problem of learning to solve manipulation
tasks from images, where the robot must complete a task with
state information being provided from camera observations
and has access to some well-defined proprioceptive infor-
mation, such as joint angles. When learning robot policies
from images, the agent must implicitly learn to map the
image and its actions back to its own pose. Learning this
action-observation mapping of multi-link articulated objects
is inherently difficult because the pose is not only high
dimensional, but also has structural constraints inherent in
the rigid body chain that makes up the robot. Past work
on mixture density estimation using neural networks [36]
utilizes a neural network which, given input joint angles
and assuming fixed link lengths, predicts the parameters of
a mixture distribution over end-effector positions for robot
kinematics of a simplified two link arm. Though this work
was not utilized directly for control, this illustrative example
serves as an introduction to the more general kinematics
concepts at play in this work. Deep Kinematic Pose Regres-



sion [38] embeds a differentiable kinematic object model
into a neural network for predicting pose from images.
Their network predicts the joint motion parameters of the
object, while learning directly on the joint location loss
described by a kinematics chain or kinematics tree. This
model is demonstrated on a toy 2D robot and 3D human
pose, achieving state-of-the-art results on the Human3.6M
dataset. The formulation of the kinematics loss based on
pixel input bears similarity to the overall approach featured
in our work, however Deep Kinematic Pose Regression was
used in a supervised learning setting with a direct loss on
pose, rather than for robotic control.

F. Learning Kinematic and Robot Tasks from Images

There have been an enormous spectrum of papers pub-
lished on learning kinematic [39] and robotic tasks from
images [22] and/or expert traces [40]. The key concepts
which unify many of these works are:

• Prior knowledge of the skeleton of the agent, including
important information such as the number of links and
link length

• Focus on task specific training schemes (sometimes with
the inclusion of expert traces, behavior cloning, and/or
imitation learning)

• Frequent use of curriculum learning, replay buffers,
and other training techniques common to the fields of
reinforcement and continual learning.

Many of these methods also utilize a combination of aux-
iliary objectives, in addition to the main task loss or task
reward. In Time Contrastive Networks (TCN), Sermanet
et al. [41] use self-supervision to learn representations of
human and robotic behaviors from unlabeled videos. The
time contrastive training scheme allows the model learn
representations of humans and robots, enabling a robot
to predict its own joint angles given an image of itself,
and demonstrating a robot imitating human motion without

Fig. 4: DH parameters for the Jaco 7DOF Robot as given
by the robot manufacturer [37]. DH parameters are usually
publicly available for commercial robots, but can also be
found by measuring DH parameter lengths directly on the
physical robot.

explicit joint-level correspondences between the target robot
platform and human demonstrations. Asymmetric Actor-
Critic [42] employs an actor-critic training algorithm in
which the critic is trained on full state observations, while
the actor only receives image observations. They emphasise
the benefits of fully utilizing the simulator for speeding
up training with auxiliary tasks, and adding robustness in
sim2real.

III. METHOD

We employ a Deep Deterministic Policy Gradients
(DDPG) [3] reinforcement learning agent that utilizes an
actor-critic [4] network structure. As in [42], our approach
uses the fact that the actor and critic are two separate net-
works to give extra information to the critic during training.
Our reinforcement learning agent is built on the DrQv2 [6]
network architecture. DrQv2, which iterated on its predeces-
sor DrQ [18], utilizes image augmentation to achieve sample-
efficient high performance on continuous robot controls
tasks. DrQv2 employs a DDPG learner with uses n-step
returns to estimate TD error. All of our environment hyperpa-
rameters match the official implementation of DrQv2, aside
from the replay buffer size, which we adjust from 1e6 to
500k stored image-states. To adapt DrQv2 from Deepmind
Control Suite [43] Torque Control to Robosuite [1] Joint
Position Control, we do not repeat actions, instead the agent
runs its controller requesting relative joint angles at a rate of
10Hz. We adapt the image critic architecture from DrQv2,
with angle, eef, and kine ablations. In the angle ablation,
current robot joint angles are concatenated with the image
observation (after encoding by a convolutional network) and
actions in the critic. For both eef and kine, we estimate
the expected pose of the end-effector for a given relative
action by adding the current joint angles to the action
and running the forward kinematics. In kine, this operation
allows differentiation, and can be used by the agent as a
gradient path for learning and backpropagation, but in the
eef experiments, we prevent gradient propagation through
the DH function to study the importance of backward flow
in training the overall architecture, while providing access to
roughly the same information as kine overall.

A. Relating This Work to Background Materials

The primary differences of our method to the aforemen-
tioned are as follows

• Our work builds directly on a strong actor-critic visual
RL baseline with no use of expert traces, imitation
learning, or behavior cloning.

• We utilize dense rewards from the environment and
do not formulate pose-specific losses or employ multi-
task training. We provide end-effector pose information
(via a differentiable DH function) through the internal
workings of the critic sub-network, thus allowing the
overall actor-critic model to decide how best to use this
information to maximize overall reward. This means
that useful pose related dynamics (such as smoothness



Jaco Door Opening Trained with Images and a Kinematic Critic

Jaco Door Opening Trained with Images Only

Fig. 5: Representative traces on the door opening task from an agent with access to a differentiable DH forward kinematics
function during training, and the baseline with access only to images. In general we observe a much higher coordination
among the joints on agents trained with a Kinematic Critic, even when rewards are similar.

or stability) are learned implicitly, without explicit pose
specific losses or rewards.

• Rather than using the entire feature-based state infor-
mation in the critic like Asymmetric Actor-Critic [42],
we use only joint angles of the robot along with the DH
parameterization to improve training. This is advanta-
geous as joint angles are likely to be well-modeled in
sim2real transfer for a variety of robot platforms.

• Dynamics learning is relegated to the underlying RL
agent, and we do not explicitly factorize dynamics learn-
ing using physics knowledge - only kinematic struc-
ture, on a per-timestep basis, is used. While kinematic
structure in this work is closely related to the adjoint
calculations used in the Articulated Body Algorithm
(ABA) [44], [27], as well as the kinematic calculations
in Deep Kinematic Pose Regression [38], QuaterNet
[39], or many other works utilizing kinematic chain or
tree calculations, it is not coupled with estimations of
velocity, acceleration, mass, inertia, and other physics
related quantities. Instead we utilize a combination of
RL and standard joint-position controllers for overall
problem dynamics.

• We operate directly from pixels, with no goal condition-
ing or state information [24] beyond knowledge of the
robot geometry (assumed constant throughout training
on a per-task basis, and given to the critic sub-network)
and robot joint angles (which are also used by the
controller). The actor only consumes images as inputs,
as is common in continuous control from pixels work
in reinforcement learning [6], [19].

IV. EXPERIMENTS AND DISCUSSION

We investigate the impact of adding differentiable kine-
matics structure into the critic of an image-based rein-
forcement learning architecture for a set of tasks trained
in Robosuite [1], a robotics simulation framework pow-
ered by the MuJoCo physics engine [45]. For all exper-
iments, we utilize a Joint Position controller with fixed
impedance parameters. The joint position controller has
a max action step of 0.15 radians for all joints. We
tune the controller for Jaco to set KP and damping
ratios for the 7 joints to (30, 60, 50, 70, 60, 70, 90) and
(0.1, 0.17, 0.2, 0.3, 0.1, 0.1, 0.1), respectively.

We demonstrate performance on 4 tasks: Door, Reach,
Lift, and Can (in approximate order of increasing difficulty)
for the Jaco 7DOF manipulator and the Panda 7DOF arm.
Agents view the scene with a single RGB camera and
receive a dense reward for all tasks. In the PickPlaceCan
task, we greatly improved sample efficiency on all agents by
adapting the dense reward in Robosuite to include a touching
reward which encourages each fingerpad of the manipulator
to make contact with the object of interest (in this case,
the can). This touch-based reward was especially important
in the compliant 3-finger Jaco gripper where collecting the
benchmark grasp reward was difficult as it required caging
with all fingers. Object position and robot initial joints are
randomized on reset, with range of variability set per task.

Our experiments show that the differentiability of the
DH function is critical to driving effective learning of the
network. This is particularly evident in the reward traces for
the Jaco Door opening task. Without propagating information
from the DH function inside the critic, through the action
space, into the actor and convolutional encoder networks,



Fig. 6: Panda evaluation curves depicting the mean (solid
line) and the 95 percent shaded confidence interval around
the mean over 5 randomly chosen seeds. Our agents, using
the Kinematic Critic architecture (green), outperform other
agents which have access to only images (blue) and image
agents with critics which are also given robot joint angles
directly (orange).

we see performance far below baseline levels (traces labeled
eef, in red vs kine in green). Coupled with improved perfor-
mance when using differentiable DH (trace labeled kine, in
green), this shows the importance of gradient information
for improved agent learning compared to other methods
which supply proprioceptive information but do not admit
backpropagation or automatic differentiation.

We also demonstrate the Reach policy on a real Jaco
arm (see Fig.1(m)). To test the learned agent controller, we
first sync the simulator to the real setting, approximately
matching ball position between the two modalities, then
feeding a set of simulator images to the policy model. We
then predict actions based on the simulator frames, apply
the predicted action to the real robot, update the simulated
robot pose as the real arm moves during the experiment, and
again feed the resulting simulated visual observations into
the agent to repeat the prediction loop.

Despite the limitations of this hybrid simulation-real ap-
proach, we see success in utilizing simulation learned poli-
cies in a real world setting. More sophisticated approaches
utilizing domain adaptation or sim2real methods [46] to
better blend simulation and real world operation could dras-
tically improve this setting, but fall outside the scope of this
publication.

V. CONCLUSION

In this work, we introduce a method of incorporating
differentiable Denavit-Hartenburg (DH) transformations into

Fig. 7: Jaco Evaluation curves depicting the mean (solid line)
and the 95 percent shaded confidence interval around the
mean over 5 randomly chosen seeds. Our agents using the
Kinematic Critic architecture (green) on average outperform
other tested agents which have access to only images (blue)
and image agents with critics which are given robot joint
angles directly (orange).

an actor-critic reinforcement learning algorithm based on
DrQv2 [6]. By training a critic with access to DH while
training its actor only on images, we learn vision-based
policies for complex manipulation tasks. Evaluation shows
that the differentiability of the DH transformation in the
critic is crucial for effective training, and overall our method
improves upon strong actor-critic baselines across numerous
benchmark tasks. The learned policies are directly trans-
ferrable to real-world settings, and we demonstrate this by
tasking a real-world robot using simulation learned policies.
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F. dAlché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[8] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018. [Online]. Available: http://github.
com/google/jax

[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online].
Available: http://arxiv.org/abs/1312.6114

[10] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, pp. 229–
256, 1992. [Online]. Available: https://doi.org/10.1007/BF00992696

[11] “A comparison between the denavit hartenberg and the screw-based
methods used in kinematic modeling of robot manipulators,” Robotics
and Computer-Integrated Manufacturing, vol. 27, no. 4, pp. 723–
728, 2011, conference papers of Flexible Automation and Intelligent
Manufacturing.

[12] R. Martı́n-Martı́n, M. A. Lee, R. Gardner, S. Savarese, J. Bohg,
and A. Garg, “Variable impedance control in end-effector space: An
action space for reinforcement learning in contact-rich tasks,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 1010–1017.

[13] O. Khatib, “Inertial properties in robotic manipulation: An object-level
framework,” The International Journal of Robotics Research, vol. 14,
no. 1, pp. 19–36, 1995.

[14] J. Hansen, F. Hogan, D. Rivkin, D. Meger, M. Jenkin, and G. Dudek,
“Visuotactile-rl: Learning multimodal manipulation policies with deep
reinforcement learning,” in International Conference on Robotics and
Automation, 2022.

[15] J. Wong, V. Makoviychuk, A. Anandkumar, and Y. Zhu, “Oscar:
Data-driven operational space control for adaptive and robust robot
manipulation,” in IEEE International Conference on Robotics and
Automation (ICRA), 2022.

[16] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learn-
ing with context-based representations,” in International Conference
on Machine Learning. PMLR, 2021, pp. 9767–9779.

[17] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning, 2007, pp. 745–750.

[18] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,”
in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=GY6-6sTvGaf

[19] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsu-
pervised representations for reinforcement learning,” arXiv preprint
arXiv:2004.04136, 2020.

[20] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to con-
trol: Learning behaviors by latent imagination,” arXiv preprint
arXiv:1912.01603, 2019.

[21] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11). Citeseer,
2011, pp. 465–472.

[22] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[24] V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and S. Birch-
field, “Joint space control via deep reinforcement learning,” Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021.

[25] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Oper-
ational space control: A theoretical and empirical comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008.

[26] M. Lutter, L. Hasenclever, A. Byravan, G. Dulac-Arnold, P. Trochim,
N. Heess, J. Merel, and Y. Tassa, “Learning dynamics models for
model predictive agents,” arXiv preprint arXiv:2109.14311, 2021.

[27] M. Lutter, J. Silberbauer, J. Watson, and J. Peters, “A differentiable
newton-euler algorithm for real-world robotics,” 2021.

[28] S. East, M. Gallieri, J. Masci, J. Koutnı́k, and M. Cannon, “Infinite-
horizon differentiable model predictive control,” arXiv preprint
arXiv:2001.02244, 2020.

[29] J. C. G. Higuera, D. Meger, and G. Dudek, “Synthesizing neu-
ral network controllers with probabilistic model-based reinforcement
learning,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 2538–2544.

[30] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1714–1721.
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