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Abstract— Manipulating objects with dexterity requires

timely feedback that simultaneously leverages the senses of

vision and touch. In this paper, we focus on the problem

setting where both visual and tactile sensors provide pixel-level

feedback for Visuotactile reinforcement learning agents. We

investigate the challenges associated with multimodal learning

and propose several improvements to existing RL methods;

including tactile gating, tactile data augmentation, and visual

degradation. When compared with visual-only and tactile-only

baselines, our Visuotactile-RL agents showcase (1) significant

improvements in contact-rich tasks; (2) improved robustness

to visual changes (lighting/camera view) in the workspace;

and (3) resilience to physical changes in the task environment

(weight/friction of objects).

I. INTRODUCTION

The synergy between the senses of vision and touch is
fundamental to the manner in which animals interact with
the world around them. While vision is informative of an
object’s pose and general shape, the sense of touch provides
accurate feedback on the location of contact, interaction
forces, and the object’s material properties. Despite the well
understood importance of visual and tactile feedback in
human manipulation [1], robotic systems struggle to integrate
both modalities with the ease displayed by humans.

In this paper, we develop model-free deep reinforcement
learning agents that learn to utilize high-resolution visual and
tactile information for manipulation tasks. Reinforcement
learning approaches have shown an impressive ability to
learn expressible controllers for robotic manipulation [2].
Most techniques are developed to use visual data from a
third-person view optical camera [2] or combine camera
observations with low-resolution tactile sensing [3]. With
the recent development of modern pixel-based tactile sensors
such as Gelsight [4], GelSlim [5], Omnitact [6] and STS [7],
there is an opportunity to provide robots with high-resolution
touch feedback. Here, we consider a challenging triad: dex-
terous manipulation tasks; high-resolution visual and tactile
sensors; and reinforcement learning.

In over 200 experiments, we illustrate the benefits of
the Visuotactile-RL paradigm and investigate the challenges
of this high-resolution, multimodal observation space. In
addition to evaluating state-of-the-art reinforcement learning
algorithms, we propose training techniques and network
architectures to overcome the difficulties faced in this multi-
faceted sensing regime.
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Fig. 1. Visuotactile-RL network architecture diagram of MP-DrQv2
with tactile gating. The network takes in raw visual, tactile, and proprio-
ceptive observations and encodes them with modality specific modules. All
training is done online with a TD error objective. We find that including a
tactile gate to control the flow of tactile gradients through the network as
a function of the contact state improves learning on tactile-rich tasks. The
network’s core is shared to infer the policy ⇡(at|st) and the Q-functions
Q and Qtarget, which include robot actions as input.

While visual sensing provides continuous feedback to
the agent during interactions, tactile sensing only provides
feedback when the sensor interacts with the environment
physically. During contact, tactile sensing provides valuable
information that is related to the interaction, namely the lo-
cation, shape, and interaction forces at contact. For example,
when opening a door, visual feedback drives the reaching
phase, while our attention quickly shifts to tactile cues once
contact is made with the handle to obtain more precise
information on the moment of contact, the handle location,
and the grasp stability.

The fundamentally discontinuous nature of physical inter-
actions poses important challenges for policy learning meth-
ods. While this is acknowledged and well-studied within the
model-based planning and control community [8], [9], [10],
[11], it is often overlooked in reinforcement learning. Even
as data-driven methods do not explicitly require reasoning
over sensory discontinuities, they must cope with unbalanced
datasets where only a small fraction of examples include
tactile information, as illustrated in Fig. 4. This leads to a
number of important questions regarding the applicability
and effectiveness of reinforcement learning methods for pol-
icy learning. How do we prevent the agent from over-biasing
its attention on visual feedback, which is more prevalent in
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Fig. 2. Optical tactile sensors. This class of high-resolution tactile sensors render pixel-level images that emphasize the contact geometry of objects
as they interact with the robot finger. This paper investigates how best to exploit the type of feedback provided by these sensors within a reinforcement
learning framework to learn expressive feedback policies.

the dataset? Do the discontinuities associated with contact
interactions negatively impact learning stability?

While tactile-only feedback controllers have been show-
cased for tactile-centric tasks such as peg insertion [12], here
we investigate a more general scenario where the object
does not begin in contact with the desired location in the
environment. In this paper, we investigate the limitations of
existing RL algorithm for multimodal policy learning and
propose novel perceptual architectures and training proce-
dures to overcome them. The main contributions of this work
are:

Analysis of Visuotactile-RL. We present an in-depth analy-
sis of the performance of state-of-the-art reinforcement learn-
ing algorithms and various data augmentation and training
strategies. We test a variety of perceptual frameworks and
architectures to best fuse the visuotactile sensing modalities
and present a numerical experiment study on three simulated
manipulation robotic tasks in the Robosuite [13] simulation
framework.

Multimodal Perception Architecture. We introduce tactile

gating, a learning mechanism that addresses the intermittent
nature of tactile feedback. A tactile gate in the tactile
perceptual module prevents the flow of tactile feedback
through the network in the absence of detected contact. We
show that tactile gating can improve learning performance
and help the agent better exploit tactile sensing when used
in tandem with visual feedback on contact-rich tasks.

The long term objective of this research is to design
control strategies for contact-rich robotic manipulation tasks
that exploit multi-modal sensing. The rest of this paper
is structured as follows. Section II reviews relevant work
related to this manuscript. Section III provides background
on Data Regularized Q (DrQ), a model-free reinforcement
learning algorithm shown to be effective at learning low-
level policies from image observations. In Section IV, we
introduce tactile gating, a learning mechanism that controls
the flow of tactile feedback through the agent’s network
shown to be effective for multi-modal contact-rich task. We
present our experimental setup on three robotic manipulation
simulation tasks in Section V and present our experimental
results in Section VI.

II. RELATED WORK

A. Tactile Sensing for Robotics

The sense of touch is a rich and critical source of feedback
during robot manipulation. Traditional tactile sensing has
included measurement of shape, texture and forces in various
directions, among other key attributes [14], gathered using a
wide variety of tactile measuring technologies [15]. A new
generation of optical tactile sensing [4], [16], [5] employs
cameras embedded in a compliant gel capable of imaging the
contact surface at high resolution. These sensors capture the
deformations of a reflective soft surface as it makes contact
with the world. This enables high resolution reasoning about
contact geometry as well as slip and contact forces.

Recently, there have been a number of works concerned
with developing tactile policies that are able to exploit
the rich information provided by optical tactile sensors for
robotic manipulation. Tian et al. [17] develop a model-based
tactile controller using pixel-level feedback to manipulate
small objects. Hogan et al. [18] develop closed-loop tactile
controllers are developed for a dual palm manipulation sys-
tem able to manipulate objects with dexterity on a table top.
Wang [19] showcases robotic system capable of swining up
and stabilizing objects by using the rich feedback provided
by optical tactile sensors to estimate the object’s physical
parameters. In Dong [20], model-free RL is used to develop
a tactile policy to align and object and environment with a
tactile-based feedback insertion policy. These studies focus
on the development of tactile-only policies and do not
integrate visual reasoning.

B. Visuotactile Manipulation

There are a number of recent works in the literature
that explore how best to fuse visual and tactile feedback
in the context of reinforcement learning. [21] shows that
a Variational Autoencoder (VAE) perceptual architecture is
effective to extract meaningful state representations from
visual and tactile inputs on a simple manipulation task. This
architecture is extended to multimodal control in [3] on a peg
insertion task with visual and force-torque sensing. [22] use
Proximal Policy Optimization (PPO) [23] with pixel-level
visuotactile inputs to teach a simulated robot arm to perform
several tactile-rich tasks in a simulation environment. Unlike
the tasks that are the focus of this work, the tasks in [22]
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Fig. 3. Visuotactile-RL benchmark tasks. We consider three robotic tasks implemented in the Robosuite simulation framework. In TactileReach, the
task is to precisely make contact with one of the three textures (square, triangle, sphere). In Door, the task is to open a hinged door with a robotic palm.
In TactileLift, the task is to grasp and raise an object with a robotic gripper to a minimum height.

feature sustained contact interactions between the surface
of the tactile sensor and the manipulated object. Our work
contrasts from these previous approaches by focusing on
the learning performance in the presence intermittent tactile
feedback, as well as evaluating the robustness of the learned
policies to perturbations in physical and visual properties of
the environment.

C. RL for high-dimensional inputs

There have been a number of recent advances in the
development of RL approaches that learn policies directly
from pixel-level feedback. A popular approach has been to
extract information from image observations using learned
models as in SLAC [24], SAC-AE [25], PlaNet [26] and
Dreamer [27]. However, DrQ [28] showed that state-of-the-
art performance could be achieved in a model-free setting
with a Soft Actor Critic (SAC) agent by employing data
augmentation. The Data Regularized Q (DrQ) learning ap-
proach demonstrates that image-based RL agents have a
tendency to overfit to observed data. This paper was followed
by DrQv2 which exchanges SAC for a DDPG learner and
multi-step Q updates. The idea that diverse data improves
learning and robustness, a well-known concept in the field of
computer vision, is also employed in robotic sim2real tasks.
Domain randomization (DR), where a simulated environment
is randomized during agent training [29] is a common tool
for improving robustness in sim2real.

III. BACKGROUND

We consider a Markov Decision Process (MDP) defined by
the tuple (S,A, p, r), where S is the set of continuous states,
A is the set of continuous actions, p : S ⇥ S ⇥ A 7! R+.
represents the probability density of the next state st+1 2 S
given the current state st 2 S and the current action at 2 A.
A stochastic policy is a mapping ⇡ : S ⇥ A 7! R+. The
environment returns a reward r : S ⇥ A 7! [rmin, rmax] at
every state transition. The objective of reinforcement learning
is to find an optimal policy ⇡⇤ from the set of admissible
policies ⇧ that maximizes the total returns given a reward
function r.

⇡⇤ = argmax⇡2⇧

X

t

E(st,at)⇠⇢⇡
[r(st, at)] . (1)

A. DrQv2

DrQv2 [2] is an off-policy actor-critic RL algorithm that
efficiently learns a policy directly from pixels without a
model. Due to its recent success in learning robotic control
from images, we employ this approach as the basis for
our Visuotactile-RL agents. DrQv2 yields state-of-the-art
performance by using image perturbations to regularize the
value function. It introduces an optimality-invariant state
transformation f : S ⇥ T ! S as a state mapping that
preserves the Q-function

Q(s, a) = Q(f(s,⌫), a)8s 2 S, a 2 A and ⌫ 2 T , (2)

where T denotes the set of state transformations.
Adapting the DDPG algorithm, DrQv2 incorporates n-step

returns, employs a decaying schedule for exploration noise,
and computes the Q-function over image observations which
undergo a randomly sampled image shift during training.

As DrQv2 owes much of its high performance to the
augmentation of images during training, it is natural to ask
whether this technique will translate from the stationary
visual setting to the tactile paradigm. For instance, DrQv2
performs a random shift of the input image, which is a
common data augmentation computer vision pipelines, but
may not be applicable to visuotactile observations. We know
that this operation will not preserve the underlying state of
the tactile observation as it introduces an effective relative
position shift between the observed scene and the tactile
sensor. We further explore this concept and test the idea of
tactile augmentation in Section VI.

IV. METHODOLOGY

The goal of this paper is to investigate the challenges
of visuotactile-RL in order to develop agents capable of
robustly fusing the senses of vision and touch for robotic
manipulation. We focus on the problem setting where visual
information is provided in the form of an RGB image and
where tactile feedback is provided in the form of pixel-level



Fig. 4. Tactile interactions vs. learning experience. Tactile sensing
provides intermittent feedback as the sensor interacts with the environment.
As the agent learns to interact with the environment during a door opening
task, it explores the door handle in three stages. Under 100 episodes, it
makes very few tactile interactions resulting in sparse tactile observations.
From 100 to 300 episodes, it obtains rich tactile observations as it is learning
to turn the handle. Once the behavior is learned (around 300 episodes), the
agent only receives tactile feedback during the handle turning phase that
occurs around step 50.

measurements, as is typical for novel optical tactile sensors
shown in Fig. 2.

One of the biggest challenges in achieving robust mul-
timodal policies is that the tactile signal can be difficult
to exploit when combined with visual feedback. We hy-
pothesize that this occurs due to an unbalanced dataset
where only a fraction of examples include tactile information.
The distribution of tactile examples is also non-uniform
over training. We illustrate this data imbalance problem
in Fig. 4, which shows the intermittent feedback provided
by tactile measurements as the sensor interacts with the
environment. Early in the training process, the agent makes
infrequent tactile encounters, but, as learning progresses and
the tactile sensor is activated more often due to successful
manipulation, the model must now deal with a newly useful
tactile modality.

Perhaps as a result of the intermittent tactile signal, we
found that baseline models become overly reliant on visual
information and ignore the tactile input in tasks which do not
explicitly require tactile (Door and TactileLift). In order to
evaluate the capability of multimodal agents to utilize either
modality, we propose the use of domain randomization to test
the ability of agents to exploit either vision or touch. Our
evaluation process will involve testing agents in a setting
in which one of the modalities has been altered from the
training environment and comparing to a baseline agent
which is specifically trained under domain randomization.

A. Tactile Gating

Inspired by Long Short Term Memory recurrent neural
networks [30] and Highway Networks [31], we introduce a
gating mechanism that dynamically controls the flow of the
information to the agent state at each time step based on
the usefulness of the tactile signal. This technique, which
we refer to as tactile gating, utilizes a hard gate which is
activated during contact, detected by monitoring the depth
image from the tactile observation. The gate remains closed
when there is not tactile activation to prevent gradient
propagation to the tactile encoder.

B. Visual Degradation

We also investigate whether degrading the visual signal
can improve multimodal performance. Motivated by the in-
centive to better exploit tactile feedback, during training, we
reduce the quality of the visual measurements to encourage
the system to focus its attention on tactile cues. In the image

dropout training paradigm, the signal from the camera is
randomly removed from the observation for a fraction of the
interactions.

V. EXPERIMENTAL SETUP

We investigate Visuotactile-RL on a suite of tasks where
the agent must learn to exploit visual information to find and
establish contact with an object and then use its tactile sensor
to interact with it.

Experiments are performed in the Robosuite [13] simu-
lation framework, which uses MuJoCo [32] as a physics
engine. In all scenarios, the RL agent controls the agent
using an Operation Space Controller (OSC) [33] operating at
20 Hz on end-effector pose. Our results are reported on the
Panda robot arm which uses proprioceptive feedback as well
at least one other pixel-based sensing modality to complete
the task.

We simulate the output of the tactile sensor by ren-
dering the contact geometry relative to the perspective of
the robot manipulator. While there are a number of avail-
able simulators for optical based tactile sensors such as
TACTO [34], Tactile-Gym: RL [22], and Geometric Contact
Rendering [35]. We use Geometric Contact Rendering as
detailed in [35] to simulate the tactile imprint. This technique
consists in clipping the depth image obtained from the
perspective of the robot’s fingertip to a threshold value
corresponding to the half width of the silicone membrane.
The main motivation to use this technique is that it results
in faster simulation speeds that translate to lower agent
training times. Note that there is a well established procedure
based on photometric stereo that allows to reconstruct the
depth image from the raw tactile imprint from optical tactile
sensors, as depicted in Fig. I.

In order to quantify agent robustness to physical changes
in the environment, we employ domain randomization on
physical dynamics (friction, weight, etc) for objects in the
scene. This environment setup is referred to as DR Dy-

namics, as shown in Table I, and is employed in some
training experiments and for evaluation in relevant tasks.



Fig. 5. Tactile Gating improves learning speed on tactile-critical

tasks. This plot demonstrates the evaluation reward by training step for
TactileReach. Tactile gating (orange) significantly improves the speed at
which the agent learns to solve this visuotactile task when compared to the
multimodal baseline, MP-DrQv2 (blue).

High performance under DR Dynamics suggests the agent
may be capable of utilizing the tactile sensor for feedback
when changes in the environment are not obvious in the
visual sensor. Our evaluations are done on all objects in the
scene aside from the robot itself. We also test the agents
under DR Visual, which perturbs the lighting conditions
and camera location of the visual image. This randomization
significantly alters the viewpoint of the camera, often causing
the object of interest to be absent from the scene. We employ
the default Robosuite DR wrapper for randomization, and
sample a new environment configuration for each episode.

A. Tasks

We focus on three simulated robot tasks: TactileReach,
Door, and TactileLift (see Figure 3). Each task is evaluated
on three sensor combinations: 1) camera-proprio, 2) camera-
tactile-proprio, and 3) tactile-proprio, where camera denotes
a third person view on the environment, tactile refers to
an image-based imprint of the contact, and proprio is the
position and velocity of the robot joints.

1) TactileReach: In TactileReach, shown in Fig. II-A,
the agent is tasked with touching a tactile feature on the
surface of the cylinder in the presence of two distracting
tactile features with a palm end-effector. We design this
task to test the performance of visuotactile controllers across
both modalities. The robot must use vision to reach out
from a starting position to the cylinder, which is randomly
initialized on the workspace. Since the tactile features are
not observable by the camera, tactile feedback is necessary
to intentionally align the palm with the target tactile feature
and receive full reward. The reward schedule is the same as
the Reach component of the Robosuite Lift task [13], with
the exception that success is defined as the visuotactile sensor
making precise contact with the target texture.

2) Door: We consider a the standard Robosuite door
opening task, but outfit the robot arm with a palm end-
effector. The task, shown in Fig. II-A, requires the agent
to turn an articulated handle to open a door with a randomly
generated door frame position and rotation offset.

Fig. 6. Agents that exploit tactile information perform well under

strong visual changes compared to visual-only agents. This plot depicts
the evaluation of Door agents under Visual DR, testing the scenario where
agents must act under unusual visual perturbations. The visual-only agent
completely fails in this scenario, while the tactile-only agent remains robust
as it does not observe the randomization. Comparing the multimodal models,
we find that Tactile Gating performs similar to the baseline (MP-DrQv2)
without requiring intentional degradation of the visual sensor during training
(DR Visual and Camera Dropout).

Fig. 7. Multimodal policies improve robustness to dynamics changes

in TactileLift (weight, friction of the box). We find that tactile is critical
to solving this evaluation, with multimodal agents performing better than
visual-only or tactile-only policies when faced with randomized dynamics.
The agent which was trained on domain randomization performs best
overall, but Tactile Gating produced the single highest performing agent
on this evaluation as shown in Table I.

3) TactileLift: The TactileLift task, shown in Fig. II-A, is
adapted from the standard Robosuite Lift task to test tactile
sensing. This task requires the agent to successfully grasp
and raise a randomly positioned box to a minimum height.
We equip the robot with a parallel jaw gripper which has
two tactile sensors. Images from the two tactile sensors are
stacked on the channel axis and treated as one observation.
At the start of each episode, we randomly generate small
spherical protrusions on the surface of the box. The spheres
are made to be tactile obstacles by reducing the simulated
friction on their surface so as to make grasping the box more
difficult.

VI. EXPERIMENTS

In this section, we demonstrate that Visuotactile-RL is
powerful in scenarios involving 1) rich contact interactions 2)
visual randomizations, and 3) perturbed dynamic parameters.

All RL experiments are performed using the default
DrQv2 hyperparameters [2]. We change the size of the replay
buffer 600,000 to accommodate the longer training time
needed to learn manipulation. In addition to our analysis
using DrQv2, we develop and evaluate a pixel-based variant



TABLE I
RESULTS ON 5 TASKS REPORTED AS THE MEAN AND STANDARD DEVIATION (MEAN±STD) IN EVALUATION ON EXPERIMENTS DESCRIBED IN EACH

COLUMN. GRAY ROWS INDICATE PERFORMANCE IN 5 SEEDS FOR 5 EVALUATION EPISODES AFTER 500000 TRAINING STEPS. WE ALSO EVALUATE

THE BEST SEED FROM EACH EXPERIMENT OVER 10 EPISODES IN THE FOLLOWING ENVIRONMENTS RELATIVE TO THE TRAIN ENVIRONMENT: 1) SAME

SHOWN IN WHITE 2) DR DYNAMICS IS SHOWN IN BLUSH, AND 3) DR VISUAL IN YELLOW.

Visual-Proprio Visual-Tactile-Proprio Tactile-Proprio

MP
DrQv2

MP
DrQv2

DR Dyn

MP
DrQv2
DR Vis

MP
DrQv2

MP
DrQv2

DR Dyn

MP
DrQv2
DR Vis

SP
DrQv2

MP
DrQv2

Tac Gate

MP
DrQv2

w/o
Tac Aug

MP
DrQv2
Cam
Drop

DrTD3 MP
DrQv2

TactileReach 107⌥ 9 - 59⌥ 14 160⌥ 79 - 53⌥ 11 109⌥ 4 236⌥ 126 109⌥ 3 67⌥ 10 115⌥ 45 74⌥ 45
Same 110⌥ 19 - 57⌥ 25 361⌥ 8 - 75⌥ 13 119⌥ 62 351⌥ 20 162⌥ 103 100⌥ 34 - 87⌥ 99

DR Visual 45⌥ 37 - 53⌥ 23 58⌥ 75 - 52⌥ 22 44⌥ 37 91⌥ 134 43⌥ 33 102⌥ 79 - -
Door 340⌥ 51 339⌥ 26 152⌥ 80 369⌥ 3 268⌥ 127 123⌥ 45 272⌥ 152 277⌥ 127 227⌥ 155 245⌥ 157 27⌥ 24 210⌥ 140
Same 370⌥ 7 328⌥ 106 54⌥ 45 372⌥ 1 358⌥ 3 26⌥ 11 372⌥ 1 369⌥ 4 260⌥ 139 366⌥ 14 - 369⌥ 1

DR Dynamics 279⌥ 126 240⌥ 131 37⌥ 50 350⌥ 21 317⌥ 97 25⌥ 15 309⌥ 116 218⌥ 159 277⌥ 110 292⌥ 131 - 273⌥ 151
DR Visual 88⌥ 141 78⌥ 143 111⌥ 142 82⌥ 148 16⌥ 39 168⌥ 150 48⌥ 104 110⌥ 20 108⌥ 29 363⌥ 24 - 366⌥ 2
TactileLift 146⌥ 38 - - 167⌥ 72 190⌥ 46 49⌥ 9 - 194⌥ 70 167⌥ 54 68⌥ 35 40⌥ 10 44⌥ 10

Same 328⌥ 54 - - 315⌥ 103 251⌥ 125 36⌥ 15 - 305⌥ 92 235⌥ 131 136⌥ 154 - 51⌥ 47
DR Dynamics 235⌥ 119 - - 242⌥ 124 257⌥ 103 40⌥ 13 - 246⌥ 89 242⌥ 124 98⌥ 96 - 74⌥ 107

DR Visual 51⌥ 67 - - 47⌥ 84 68⌥ 111 61⌥ 30 - 40⌥ 31 51⌥ 108 86⌥ 110 - 57⌥ 106

of TD3 [36], dubbed DrTD3, which utilizes the same encoder
architecture and data augmentation strategy as MP-DrQv2,
but without the n-step TD error estimates and scheduled
exploration noise.

1) Perception Architecture: We investigate two image en-
coder architectures: MultiPath (MP) and SinglePath (SP).
In the MultiPath paradigm, a unique encoding network is
used for vision and tactile, while in SP the same encoder
is shared by both modalities. Our agent utilizes the past 3
frames as an input state, resulting in an observation size
of (9 ⇥ 84 ⇥ 84) for the RGB image and an observation
size of (3 ⇥ 84 ⇥ 84) for the tactile depth image when
using the palm tactile sensor and (6 ⇥ 84 ⇥ 84) when
utilizing the gripper. In the SinglePath setting, images from
both sensors are combined on the channels axis, producing
an input of (12 ⇥ 84 ⇥ 84) to the convolutional encoder
with the palm sensor. We employ the same convolutional
encoder architecture described in DrQv2 [2] in all pixel-
based encoders in this paper. We consider MP vs SP in
Table I and find that overwhelmingly, the MP architecture
offers higher performance, justifying the increase in the
number of model parameters and wall clock training time
necessary for separate encoders.

2) Tactile Gating: The inclusion of tactile gating in the
model architecture is shown to improve the learning speed
in contact-rich tasks. We present the learning curve for
TactileReach in Fig. 5 where the use of a tactile gate provides
an improvement in performance of 25%. We also note that
this agent needs fewer environment interactions to learn to
solve the task, and is capable of exploiting the tactile sensor
more effectively than baseline methods. We note that for the
Door task, the inclusions of tactile gating did not significantly
alter the learning performance, but did improve robustness to
visual perturbations. We hypothesize that this is due to the
fact that tactile reasoning is less critical for the successful
executions of this tasks in the simulated environment.

3) Visual Degradation: We test the several methods of
visual degradation where we reduce the quality of the
visual observations to encourage the agent to utilize tactile
information. We tested visual degradation by training agents

with visual dropout and DR Visual and find that visual
dropout produces more performant agents in both the stan-
dard environment and DR Visual evaluation. Note that visual
degradation techniques have a negative impact on overall
system performance, but do seem to improve agent reliance
on tactile information. Given the promising performance of
image dropout to improve multimodal sensing, this technique
should be explored further, for example by exploiting the
simulation environment to implement conditional camera
degradation that depends on the presence of a tactile signal.

4) Tactile Augmentation: We find that Tactile Augmen-
tation improves performance on most tasks as shown in a
head-to-head comparison of columns MP-DrQv2 and DrQv2
w/o Tac Aug in Table I. This suggests that the augmentation
approaches that are successful in pixel-based RL may trans-
late well to the tactile signal.

VII. CONCLUSION

This paper explores the ability of deep reinforcement
learning methods to fuse and exploit visual and tactile feed-
back to learn manipulation policies. We focus on the problem
setting where tactile feedback is provided by optical-based
sensors that render high resolution pixel-level information.
We find that the fusion of both modalities results in optimal
performance on a set of manipulation tasks as well as an
improved robustness to system perturbations in the dynamics
and lighting conditions.

Key to these results is the inclusion of a tactile gate that
controls the flow of tactile feedback through the agent’s
network. We show that tactile gating results in an agent
that can exploit tactile sensing earlier and achieve higher
performance than benchmarks that employ common encoder-
based perceptual modules. Additionally, we show that the
use of data augmentation techniques adapted from DrQv2 on
both tactile and visual streams is beneficial to robust learning.
While this is well known for visual feedback, we show that
this technique also leads to significant improvements with
tactile sensing.
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