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Abstract

We demonstrate the use of conditional autore-
gressive generative models (van den Oord et al.,
2016a) over a discrete latent space (van den Oord
et al., 2017b) for forward planning with MCTS. In
order to test this method we introduce a new envi-
ronment featuring varying difficulty levels, along
with moving goals and obstacles. The combina-
tion of high-quality frame generation and classical
planning approaches nearly matches true environ-
ment performance for our task, demonstrating the
usefulness of this method for model-based plan-
ning in dynamic environments.

1. Introduction
Planning agents find actions at each decision point by con-
sidering future scenarios from their current state against a
model of their world (Lavalle, 1998; Kocsis & Szepesvári,
2006; Stentz, 1995; van den Berg et al., 2006). Though
typically slower at decision-time than model-free agents,
agents which use planning can be configured and tuned with
explicit constraints. Planning based methods can also re-
duce the compounding of errors for sequential decisions by
directly testing long term consequences from action choices,
balancing exploitation and exploration, and generally limit-
ing issues with long-term credit assignment.

Model-free reinforcement learning approaches are often
sample inefficient, requiring millions of steps to jointly learn
environment features and a control policy. Agents which
employ decision-time planning techniques, on the other
hand, do not explicitly require any training prior to decision
time. However, to perform well, planning-based agents
need a very accurate future model of their environment for
evaluating actions. A perfect model of the future to perform
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forward planning is usually not possible outside of computer
games or simulations. In this paper, we demonstrate how we
can leverage recent improvements in generative modeling
to create powerful dynamics models that can be used for
forward planning.

In this paper we discuss an approach for learning conditional
models of an environment in an unsupervised manner, and
demonstrate the utility of this model for use with decision-
time planning in a dynamic environment. Autoregressive
models have shown great results in generating raw images,
video, and audio (van den Oord et al., 2016a;b; Kalchbren-
ner et al., 2016), but have generally been considered too slow
for use in decision making agents (Buesing et al., 2018).
However, in (van den Oord et al., 2017b), the authors show
that these autoregressive models can be used as a genera-
tive prior over the latent space of discrete encoder/decoder
models. Operating over these concise latent representations
of the data instead of pixel-space greatly reduces the time
needed for generation, making these models feasible for use
in decision-making agents.

2. Background
Learning accurate models of the environment has long been
a goal in model-based reinforcement learning and unsu-
pervised learning. Recent work has shown the power of
learning action-conditional models for training decision-
making agents with perceptual models (Ha & Schmidhuber,
2018; Schmidhuber, 2015; Buesing et al., 2018; Oh et al.,
2015; Graves, 2013) and combining planning and with en-
vironment models (Silver et al., 2016b; Zhang et al., 2018;
Pascanu et al., 2017; Guez et al., 2018; Anthony et al., 2017;
Guez et al., 2018).

For real-world agents, semantic information is often more
relevant than perceptual input for task performance and
planning (Luc et al., 2017). Our experimentation over se-
mantic space shows that for our task, a VQ-VAE model
greatly outperforms VAE (Kingma & Welling, 2013) recon-
structions. Instead of assuming normally distributed priors
and posteriors as in a typical VAE architecture, VQ-VAEs
learns categorical distributions in the latent space where the
samples from the distributions are indexes to an embedding
table. Van den Oord et al. (van den Oord et al., 2017b)
demonstrates the benefits of learning action-condition and
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action-independent forward predictions over VQ-VAE la-
tent space. We build upon this work by combining it with a
classical method for planning in order to navigate in an en-
vironment with numerous dynamic obstacles and a moving
target.

We test our forward-model with a powerful anytime plan-
ning method, Monte-Carlo Tree Search (MCTS) (Kocsis &
Szepesvári, 2006). Given an accurate representation of the
future and sufficient time to compute, MCTS performs well
(Pepels et al., 2014), even when faced with large state or
action spaces. MCTS works by rolling out many sequences
of actions possible future scenarios to acquire an approxi-
mate (Monte Carlo) estimate of the value of taking a specific
action from a particular state. For a full overview of MCTS
and its many variants, please refer to (Browne & Powley,
2012). MCTS has been used in a wide variety of search and
planning problems where a model of the world is available
for querying (Silver et al., 2016a; Guo et al., 2014a; Belle-
mare et al., 2012; Lipovetzky et al., 2015; Guo et al., 2014b).
The performance of MCTS is critically dependent on having
an accurate forward model of the environment, making it an
ideal fit for testing our autoregressive conditional generative
forward model.

3. Experiments
We consider a fully-observable task in which an agent must
navigate to a dynamic goal location without contact with
moving obstacles. At each time step t, the agent realizes
an observation ot and must execute an action at. In our
experiments, the observation is an image constituting the
full view of an action-independent, two-dimensional envi-
ronment. The action space consists of 8 actions, where each
action moves a fixed amount in a specific direction, diagonal
included. We learn a conditional forward model of this en-
vironment as described in Section 3.2 and query at decision
time for action selection with MCTS.

Our problem is similar to those faced by autonomous under-
water vehicles (AUVs) navigating in a busy harbor while
try to avoid traveling underneath passing ships (Arvind
et al., 2013). In order to successfully accomplish this tasks,
the robot needs reliable dynamics models of the obstacles
(ships) and goals in the environment so it can plan effec-
tively against a realistic estimate of future states.

3.1. Environment Description

We introduce a navigation environment (depicted in the first
column of Figure 1) which consists of a configurable world
with dynamic obstacles and a moving goal. Movement
about the environment is continuous, but collision and goal
checking is quantized to the nearest pixel. In each episode
the 1 × 1 size agent and 2 × 2 size goal are initialized to

Figure 1. This figure illustrates forward rollout steps by the oracle
(left column), our 5 sample model (middle column), and the error
in the model (right column). The number of steps from the given
state t is indicated in the oracle plot’s title. In the first two columns,
free space is violet, moving obstacles are cyan, and the goal is
yellow. In the third column, we illustrate obstacle error in the
model as follows: false negatives (predicted free space where
there should be an obstacle) are red and false positives (predicted
obstacle where there was free space) are blue. The true goal is
plotted in yellow and the predicted goal is plotted in orange (perfect
goal prediction is orange).

a random location, and the goal is given a random vector
direction and a fixed velocity. The agent must then reach
the moving goal within a limited number of steps without
colliding with an obstacle. At each timestep the agent has
the choice of 8 actions. These actions indicate one of 8
equally spaced angles and a constant speed. In these experi-
ments, we test two agents, one at 0.5 pixels per timestep (1×
goal agent) and one agent at 1 pixels per timestep (2× goal
agent). The goal moves about the environment at a fixed
random angle and fixed speed of 0.5 pixels per timestep.
The goal also reflects off of world boundaries, making good
modeling of goal dynamics important to success.

The environment is divided into obstacle lanes which span
the environment horizontally. At the beginning of each
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episode, the lanes are randomly assigned to carry 1 of 5
classes of obstacles and a direction of movement (left to
right or right to left). Each obstacle class is parameterized by
a color and a distribution which describes average obstacle
speed and length. Obstacles maintain a constant speed after
entering the environment, pass through the edges of the
environment, and are deleted after their entire body exits the
observable space. The number of obstacles introduced into
the environment at each timestep is controlled by a Poisson
distribution, configured by the level parameter. For the
results reported in this paper we set the level to 6, however
there is support for a variety of difficulty settings. At each
time step, the observation consists of the agent’s current
location and the full quantized pixel space including the
goal and obstacles.

An agent receives a reward of +20 for entering the same
pixel-space as the goal and a −20 reward for entering the
same pixel-space as an obstacle. Both events cause the
episode to end. The agent has a limited number of actions
before the game times out, resulting in a reward of 0. This
step limit is dependent on the speed of the agent and the size
of the grid. For these experiments, the 2× agent has 203
steps and the 1× agent has 407 steps before the game ends.

A key component which makes our approach computation-
ally feasible is that the environments of concern are not
action conditional, meaning dynamics in the world con-
tinue regardless of what actions are chosen. This means
that generated future frames can be shared across all roll-
outs in MCTS, greatly reducing the overall sample cost for
the autoregressive model. Combined with the speed im-
provements from generating in a compressed space given
by VQ-VAE, forward generation can be accomplished in
reasonable time. It is also possible to take a similar ap-
proach in action-conditional spaces, but this would increase
the number of needed generations from the model during
MCTS rollout by a large amount.

3.2. Model Description

We utilize a two-phase training procedure on the agent-
independent, 48 × 48 × 1 environment described in the
previous section. First we learn a compact, discrete repre-
sentation (denoted Z) of individual pixel-space frames with
a VQ-VAE model (van den Oord et al., 2017b) with dis-
cretized logistic mixture likelihood (Salimans et al., 2017)
for the reconstruction loss. In the second stage, an autore-
gressive generative model, a conditional gated PixelCNN
(van den Oord et al., 2016a) is trained to predict one-step
ahead Z representations of sequential frames when condi-
tioned on previous Z representations. To introduce Marko-
vian conditions, the conditional gated PixelCNN is fed a
spatial conditioning map of 4 past Z encodings, in addition
to the current step. The resulting PixelCNN learns a model

corresponding to p(Zti,j |Zt<i,<j
, Zt−1, Zt−2, Zt−3, Zt−4),

where each dimension (i, j) of Zt is conditioned on all valid
dimensions relative to the current position via autoregres-
sive masking, and also conditioned on the previous 4 frames
by a spatial conditioning map (van den Oord et al., 2016a)
which is fed as input. Combined with the previously trained
VQ-VAE decoder this results in a model which generates 1
frame ahead, given 4 previous frames. It is possible to gen-
erate an arbitrary number of frames forward given an initial
4 frames, by chaining 1 step generations though we expect
results to degrade as forward trajectory lengths increase.

3.3. MCTS Planning

Our MCTS agent is characterized by rollout length, number
of rollouts, and temperature. We vary rollout length from 1
to 10, but hold the number of rollouts to 100 and tempera-
ture to 0.01 for all experiments. We also use a goal-oriented
prior for node selection as described by prior work using
PUCT MCTS (Rosin, 2011; Silver et al., 2017). This prior
biases tree expansion during rollouts such that actions in
the direction of the predicted goal are more likely to be cho-
sen. Adding goal information to the state has been found to
improve agents in other scenarios (Sukhbaatar et al., 2017),
and we found that this simple prior greatly improved per-
formance compared to a uniform prior, resulting in shorter
average rollout lengths.

3.4. Training

The VQ-VAE encoder consists of 4 strided convolutional
layers with a kernel size (4, 4) and sizes of 42, 32, 16, 16.
The first 3 layers have strides of 2 and the last layer has
a stride of 1. This configuration compresses an input size
of 48 × 48 × 1 down to a Z space of 6 × 6 × 1. For
learning the vector quantization codebook, we set K=512,
resulting in a compression of 48×48×3

6×6×9 ≈ 21.3 in bits over
each frame, considering there are 6 pixel-values used in
the input image (requiring 23 bits to encode minimally).
The VQ-VAE decoder inverts this process using transpose
convolutions, and appropriate stride values which mimic the
decoder settings but in reverse order.

Training was performed for 64 epochs with a minibatch size
of 32 over 837, 270 example frames which were generated
from running the environment. We use an Adam optimizer
(Kingma & Ba, 2014) with the learning rate set to 1e− 3,
and the discretized mixture of logistics loss (Salimans et al.,
2017). From the trained VQ-VAE model, we generate a new
dataset consisting of ordered Z values given by our model
over 3000 previously unseen episodes which are each 407
frames long. The PixelCNN (van den Oord et al., 2016a)
is trained over these generated Zs for 10 epochs with a
batch size of 64. We employ categorical cross-entropy loss
and the Adam optimizer (learning rate is set to 0.0003) for
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Table 1. Performance Comparison over 100 Episodes

ROLLOUT STEPS 1 3 5 10

TECHNIQUE G T D S G T D S G T D S G T D S

2×ORACLE 100 0 0 34X±17 100 0 0 36±18 100 0 0 45±28 100 4 0 68±49
2×MID 78 0 22 33±17 88 0 12 40±18 91 2 7 65±40 52 25 23 111±67
2×5 SAMPLES 84 0 16 34±17 94 1 5 46±27 89 5 6 75±51 55 23 22 112±70
2×10 SAMPLES 85 0 15 35±18 88 0 12 46±26 89 9 2 76±56 55 31 14 124±68

1×ORACLE 72 25 3 187±151 67 32 1 209±154 60 40 0 224±64 66 34 0 216±156
1×5 SAMPLES 31 3 55 97± 107 46 21 33 196±153 41 3 27 259±155 39 46 15 294±143

Table 2. This table compares agents using MCTS for forward planning on varying models (oracle and ours with varying levels of sampling
from the generative model), rollout lengths (1, 3, 5 and 10), and agent speed (2X agents are twice as fast as the goal and 1X agents are
the same speed as the goal). All agents were tested over the same set of 100 random episodes, with MCTS performing 100 rollouts at
each decision time. The values in columns G, T, and D stand for the number of games in which the described agent reached the goal
(G), ran out of time before reaching the goal (T), or died (D) by running into an obstacle. The S column describes the number of steps
completed on average by an agent, calculated only from episodes in which the agent avoided dying (smaller is better), along with the
standard deviation. When tested on the same episodes, a random agent reached the goal once at 2X speed and never at 1X speed.

predicting the discrete ”label” of each Z dimension. We
condition each prediction on a spatial map consisting of the
previous 4 frame’s Zs (van den Oord et al., 2016a).

4. Performance
Our experiments (see Table 1) demonstrate the feasibil-
ity of using conditional autoregressive models for for-
ward planning. Example playout gifs can be found in the
code repository at https:github.com/johannah/
trajectories. We compare agents using our forward
model to an agent which has access to an oracle of the en-
vironment. The oracle agent is used as an upper-bound on
performance, as although this perfect representation of the
future environment is not available in realistic tasks it is the
theoretical best we can expect generative model to do. In all
of the compared models, we first use a mid point ”average”
estimate from the discretized mixture of logistics distribu-
tion, but in those denoted by sampled, we also sample an
additional 5 or 10 times from the model and take the pixel-
wise max of the predicted obstacle values. We find this
results in a more conservative, but noisier estimate of the
car locations. We take the median location of goal estimates
over all of the samples to set the directional MCTS prior.

Errors in the forward predictions (see Figure 1) can cause
the agents to make catastrophic decisions, resulting in lower
performance when compared to the oracle. False negatives,
in particular (shown in red in Figure 1), result in the agent
mistaking an obstacle for free space. Some of these mistakes
are unavoidable as we step farther from the given state as
we can only model obstacles that are in the scene at the cur-
rent time step. This characteristic limits the efficacy of the
lengths we can model forward in time and is a phenomena
also discussed in Luc et al. (Luc et al., 2017).

Perhaps unsurprisingly, our results show that the faster (2×)
agent had an easier time reaching the goal before running
out of time. Agents which utilize longer rollouts were likely
hampered by our decision to hold the number of rollouts
constant over all of our experiments. Overall, longer rollouts
were more likely to die off in their future states and thus
often failed to come up with aggressive paths.

Each future timestep prediction with our VQ-VAE + Pixel-
CNN takes approximately 0.4 seconds on a TitanX-Pascal
GPU. An average action decision with our best performing
agent (2× 5 Samples with 3 step rollouts) takes approxi-
mately 1.7 seconds. Beyond using VQ-VAE to reduce the
input space to PixelCNN, no other methods for improving
the speed of autoregressive generation were employed. Re-
cent publications in this area (van den Oord et al., 2017a;
Kalchbrenner et al., 2018; Ramachandran et al., 2017) show
massive improvements in generation speed for autoregres-
sive models and are directly applicable to this work.

5. Conclusion
We show that the two-stage pipeline of VQ-VAE (van den
Oord et al., 2017b) combined with a PixelCNN prior con-
ditioned on previous frames captures important semantic
structure in a dynamic, goal oriented environment. The re-
sulting samples are usable for model-based planning with
MCTS over generated future states. Our agent avoids mov-
ing obstacles and reliably intercepts a non-stationary goal
in the dynamic test environment introduced in this work,
demonstrating the efficacy of this approach for planning in
dynamic environments.

https:github.com/johannah/trajectories
https:github.com/johannah/trajectories
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Karen, Danihelka, Ivo, Vinyals, Oriol, Graves, Alex,
and Kavukcuoglu, Koray. Video pixel networks. CoRR,
abs/1610.00527, 2016.

Kalchbrenner, Nal, Elsen, Erich, Simonyan, Karen, Noury,
Seb, Casagrande, Norman, Lockhart, Edward, Stimberg,
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monte-carlo planning. In Proceedings of the 17th Eu-
ropean Conference on Machine Learning, ECML’06,
pp. 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-45375-X, 978-3-540-45375-8. doi: 10.1007/
11871842 29.

Lavalle, Steven M. Rapidly-exploring random trees: A new
tool for path planning. Technical report, 1998.

Lipovetzky, Nir, Ramirez, Miquel, and Geffner, Hector.
Classical planning with simulators: Results on the atari
video games. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI’15, pp. 1610–
1616. AAAI Press, 2015. ISBN 978-1-57735-738-4.

Luc, Pauline, Neverova, Natalia, Couprie, Camille, Verbeek,
Jacob, and LeCun, Yann. Predicting deeper into the future
of semantic segmentation. ICCV, 2017.

Oh, Junhyuk, Guo, Xiaoxiao, Lee, Honglak, Lewis, Richard,
and Singh, Satinder. Action-conditional video prediction
using deep networks in atari games. In Proceedings of
the 28th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’15, pp. 2863–2871,
Cambridge, MA, USA, 2015. MIT Press.

Pascanu, Razvan, Li, Yujia, Vinyals, Oriol, Heess, Nicolas,
Buesing, Lars, Racanière, Sébastien, Reichert, David P.,
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